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LETTER

Reply to Yablonka et al.: Parity in data
processing is essential in
correlation analyses

Our recent study (1) has compelled us to reach a conclusion
that differs from the widely held idea that chemical features of
odors can be systematically mapped to spatial locations in the
olfactory bulb (2–4). In an alternative analysis using our data,
Yablonka et al. (5) claim to observe substantial correlations
between the physicochemical descriptors and odor-evoked re-
sponses, which challenge our conclusion. This discrepancy, as
we show below, results from imparity in data processing and
data selection.
First, our analyses were based on the equitable treatment of all

parameters without biasing toward a particular method. We
processed two sets of variables consistently to avoid potential
skewing of data. In our study, we computed cosine distances
(similar to Pearson) for both odor-evoked responses and chem-
ical structures. The choice was made to minimize variability
among experiments. Importantly, for high-dimensional data,
Euclidean distance does not distinguish between differences
along a single axis from those across many dimensions, whereas
cosine and Pearson distances do. Regardless, using Euclidean
distance in fact produces a weaker correlation than cosine dis-
tance (Fig. 1A). Yoblonka et al. (5) take a different approach.
They use Pearson distance for odor response, but Euclidean
distance for structural descriptors. The observed correlation can
be explained by the imparity in distance metrics.
Second, contrary to what Yablonka et al. (5) suggest, we have

performed descriptor normalization. When normalization was
performed among the odors used in the experiments, it had little
impact on correlation. In contrast, Yablonka et al. (5) perform
normalization among 1,370 odors. This practice would be valid if
responses to the 1,370 odors were sampled and the data were
transformed similarly. However, our dataset was only from the
sampling of 67 odors. We show here that normalizing against
odors outside the experimental set severely skews the distribu-
tion and, importantly, diminishes the distance values among
odors (Fig. 1 B–E). The redistribution leads to higher correlation

values (Fig. 1 F and G). Thus, the imparity in data normalization
and comparison have led to unintended skewing of distance
measurements and exaggerated correlation values.
Third, our study suggested that chemotopy breaks down when

tested against large odor sets. Consistent with this notion,
Yablonka et al. (5) show that eliminating odors leads to in-
creases in correlation. This observation, however, hardly sug-
gests a high correlation between odor descriptor and response.
In contrast, it suggests that the eliminated odors do not conform
to the rules derived from other odors. In our analysis, we also
eliminated stimuli with little response (empty arrays). Because
we used responses across different concentrations to construct
the response vector for an odor, fewer odors were eliminated.
Constructing larger vectors also provides a critical test for the
predictive power of odor descriptors. If structure predicts re-
sponse, strong correlations should emerge. We did not observe
strong correlations.
Finally, most of the correlation values from the Yablonka

et al. (5) analysis are relatively small (<0.3). Although they are
significant statistically, their power in predicting odor responses
is not. Therefore, although a subset of chemically similar odors
can activate a common set of glomeruli, the rule cannot
be generalized.
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Fig. 1. (A) Correlation analysis of data using Euclidean distance for both sets of variables. Upper: Descriptor distance normalized within the 67 odors used in
the experiments. Lower: Descriptors normalized to a set of 2,728 odors (6). (B) An example of the analysis performed on descriptors. Descriptor 78 is shown
here. The histogram of the 67 odors follows a very different distribution (Upper) from the one obtained from the 2,728 odors (Lower). (C) After normalization
with the mean and standard deviation (SD) within the 67 odors (Upper) or 2,728 odors (Lower), the 67 odors have two different distributions on descriptor 78.
Descriptor 78 becomes less useful for differentiating odors after being normalized to the full odor set, but it still contributed in the odor distance. It made all
odors similar (Lower). (D) Distribution histogram for ratios of SD for all descriptors. The SD for each descriptor is calculated using 67 odors or 2,728 odors.
Vertical line indicates ratio of 1. (E) Odor distance distribution for the 67 odors after normalization to themselves (black) or to the full set of odors (red). The
latter shifts the distance distribution leftward. (F and G) Correlation between glomeruli response and odor structure when odor distance is normalized among
the experimental set (F) or to the large set (G). Cosine distances are used in both axes.
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